• English
  • Español
  • 简体中文
  • Nederlands

'Win-win': Better fertilizer use by farmers saves money and the environment

'Win-win': Better fertilizer use by farmers saves money and the environment

Agronomist Tyler Kessler stands next to a moisture probe in a durum wheat crop south of Regina. Kessler runs a consulting business in southern Saskatchewan that advises farmers on precision farming, including the best timing and methods for fertilizer application. (Courtesy: Matthew Howard | CBC)

July 31, 2019
Dramatic increase in synthetic fertilizers has increased crop yields, but also nitrous oxide emissions

Bouncing through a durum wheat field south of Regina on an all-terrain vehicle, with a shovel strapped to the vehicle's back and an iPad mounted on its front, Tyler Kessler is taking soil samples and collecting moisture data.

Kessler is an agronomist and spends his days advising farmers on the best way to apply fertilizer to help their crops reach their yield potential.

More fertilizer doesn't always mean a bigger crop, he says, if there isn't the right mix of rain, sunshine and soil conditions. And too much fertilizer can simply be wasted, with the unabsorbed nitrogen transformed into nitrous oxide (N2O) that's released into the atmosphere.

Tyler Kessler:

“We're not applying nitrogen where we don't need it — that's a huge environmental benefit.”

“When farmers are making economical decisions based on data and precision agriculture, the environment wins every time.”
Increasingly, farmers are adopting more sophisticated fertilizer products and application methods in order to grow the most food, while spending the least amount of money. At the same time, these new approaches can reduce emissions of N2O, a greenhouse gas that is 300 times more potent than carbon dioxide.

So what's good for the pocketbooks can also be good for the environment.

Jocelyn Velestuk says her family farm near Broadview, Sask., makes a six-figure investment in manufactured fertilizer every year. And she doesn't want it to be wasted in the atmosphere as nitrous oxide. (Courtesy: Matthew Howard | CBC)